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Abstract: With the adoption of cloud computing, horizontally scalable infrastruc-

ture, and containerized deployments, Software Defined Networking (SDN) became

an integral part of data centers, Kubernetes and Open vSwitch (OVS) being one of

the commonly deployed solutions. Our work explores the possible performance

limitations of OVS under Kubernetes, focusing on pathological traffic patterns.

We discovered several types of packets causing excess system load on the cluster

nodes. We identified the root cause as a series of drop rules in OpenFlow and a

design flaw in OVS that prevents their efficient evaluation. We investigated the

impact of this problem and our research revealed a specific system configurations

under which an adversary can use the discovered inefficiencies for a practical

denial of service attack on the local cluster node, bringing the whole networking

stack down for all neighbouring containers.
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Introduction

Modern containerized cloud computing systems have complex requirements

for their networking backends. Demand for features like seamless cross-data-

center networking, multi-tenancy and security policies necessitated the use of the

Software Defined Networking (SDN) concept and, by the nature of containerized

systems, extensive use of virtualized networks.

The current shift to microservices and the resulting increase of endpoints and

the need for rapid reconfiguration emphasized the SDN control plane performance

and scalability.

A commonly deployed solution is Kubernetes for container orchestration and

Open vSwitch for the virtualized SDN, used either directly or indirectly. However,

it remains a question of how well these solutions are adapted to the networking

needs of microservices.

This work explores the performance and scalability characteristics of Open

vSwitch (OVS) based Kubernetes clusters and is focused on investigating perfor-

mance in pathological scenarios. While our experimental Kubernetes clusters were

configured with the OVN-Kubernetes networking plugin, our findings should be

transferrable to any other SDN installation using Open vSwitch.

We explored methods for stressing the OVS’s control plane and discovered

several problematic traffic patterns caused by a design flaw in OVS. We measured

OVS’s behavior under stress and learned that in certain configurations, an attacker

can use the discovered inefficiencies for an effective denial of service attack on

the local cluster node.

This thesis is divided into several chapters. In the first chapter, we provide

descriptions of all relevant technologies, how they interact and how they work

internally. The second chapter describes the configuration of our experimental

clusters to allow anyone to replicate our findings. We describe our experiments

and analyze their results in chapter three. The last, fourth, chapter discusses the

impact of our findings and suggests possible improvements.
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Chapter 1

Theoretical background

1.1 Glossary

SDN Software-defined networking. Additional details can be

found in section 1.2.

OVS Open vSwitch (https://www.openvswitch.org/). De-

tails in section 1.4.

OVN Open Virtual Network (https://docs.ovn.org/en/
latest/). Details in section 1.5.

CNI Container network interface [1]. Specification for writing

networking plugins for Kubernetes. The plugin handles

assigning IP addresses and routing packets across the

cluster.

OVN-Kubernetes CNI plugin using OVN (section 1.6).

Forwarding

tables

Network switches use forwarding tables to decide where

to forward a received packet. In Ethernet switches, the

forwarding tables consist of MAC address to network

port mapping. SDNs generalized forwarding tables so

that they can match packets in any way deemed useful,

most commonly on any header values from the second,

third, and fourth layers of the OSI model.

OpenFlow Network configuration protocol used between an SDN

controller and SDN switches. OpenFlow allows remote

configuration of forwarding tables in network switches.

Details in section 1.3

RTT round-trip time
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Figure 1.1 A schema of basic SDN components (originally from [2]).

1.2 Software-defined networking (SDN)
Software-defined networking is a loosely defined concept of separating the net-

working data plane (infrastructure layer) and the control plane (control layer)

into separate components. In traditional networking architectures, each network

device makes forwarding and/or routing decisions fully autonomously. SDNs sep-

arate the decision-making and data processing into distinct layers (see figure 1.1)

and define two main interfaces. SDN applications provide the SDN controller with

networking requirements using the northbound interface. The controller then

configures the actual network equipment using the southbound interface.

1.3 OpenFlow
OpenFlow [3] is a protocol for configuring packet forwarders (generalized

switches). OpenFlow is the de-facto standard protocol for the southbound

interface in an SDN.

In OpenFlow, there are multiple forwarding tables for every network switch.

Every table is identified with a number and contains a set of rules with priorities.

Each rule consists of matching criteria, usage statistics and actions. The following

is an example of an OpenFlow rule dumped from a running Open vSwitch using

the ovs-ofctl dump-flows $BRIDGE command:

cookie=0x802cec73, duration=22932.301s, table=33, n_packets=0,
n_bytes=0, priority=75,
arp,metadata=0x7,dl_src=24:6e:96:3c:4c:5c,arp_op=1
actions=load:0x8004->NXM_NX_REG15[],resubmit(,37)

The third line in the example specifies the rule criteria. Generally, the match-

ing criteria can include masks for header values from Ethernet, IP, transport
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layer protocols (TCP, UDP, ...), and more depending on the exact version of the

OpenFlow protocol. The criteria can check for an exact value match or with a

wildcard.

The action in a flow rule can forward the packet to a port, change a value

of a header field, store an arbitrary value as metadata accompanying the packet

in further processing, resubmit the packet to a different table and more. For the

complete list of actions, see the OpenFlow specification [3] or the ovs-actions
manpage [4].

In addition to the externally configured flow rules, the forwarding tables

also contain statistics updated every time the flow rule is used. The OpenFlow

controller can then query switches for these statistics.

1.4 Open vSwitch
Open vSwitch (OVS) [5] [6] [7] is a multilayer virtual switch. OVS runs as a

software switch on all major platforms and supports hardware offload for its data

processing layers. The supported OpenFlow protocol allows any SDNs to use

OVS in its infrastructure layer.

The internal architecture of OVS mirrors the SDN architecture (see figure 1.2)

with a control plane and data plane. ovs-vswitchd is the OVS’s control process.

ovs-vswitchd communicates via the OpenFlow protocol and stores the config-

ured flow rules in a purpose-built Open vSwitch Database (OVSDB). Alternatively,

the database can be accessed externally, and OVS can be configured without using

the OpenFlow wire protocol.

A datapath is the primary part of OVS’s data layer, the lowest component of

OVS physically forwarding packets between configured ports. There are multiple

datapath implementations, some of them implemented fully in the ovs-vswitchd
process, some of them using extra kernel modules for improved performance.

ovs-vswitchd translates the OpenFlow flow rules into a more efficient and

simplified form. These simplified flow rules are then used by the datapaths to

make forwarding decisions. We discuss datapath internals in more detail in

section 1.7.

1.5 Open Virtual Network
Open Virtual Network (OVN) [8] [9] is an SDN combining Open vSwitch with

network tunnels (by default GENEVE) for its infrastructure layer. Applications

communicate with OVN through the northdb, an OVSDB instance storing high-

level network configuration in terms of traditional networking concepts. The
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Component Description
ovsdb OVSDB instance storing the OpenFlow flow rules

ovs-vswitchd a process managing datapaths and providing OpenFlow

configuration interface

datapath a logical component in ovs-vswitchd, does the actual

packet forwarding

Table 1.1 Overview of OVS components

ovn-northd process translates the configuration into logical datapath flows and

stores the result in the southdb OVSDB instance. The ovn-controller then

distributes the flows from the southdb into individual OVS databases.

Component Description How it runs
northdb OVSDB instance storing network con-

figuration in terms of traditional net-

working concepts

centralized or

distributed

ovn-northd process translating configuration into

logical flows

centralized or

distributed

southdb OVSDB instance storing network con-

figuration in terms of logical flows

centralized or

distributed

ovn-controller configures local OVS from the

southdb
locally on every

node

Table 1.2 Overview of OVN components

1.6 OVN-Kubernetes

OVN-Kubernetes [10] is a Kubernetes CNI plugin using OVN in the background.

OVN-Kubernetes configures OVN and OVS on all cluster nodes and translates

network reconfiguration requests from the CNI API into configuration changes

for OVN.

8



Figure 1.2 Schema of OVS internal architecture (originally from [11]).

1.7 Open vSwitch Datapaths
OVS processes packets in datapaths

1
. All datapaths implement a common interface

hiding the implementation details of low-level packet processing from the layers

above.

The two most commonly used datapath implementations are netdev and

netlink. They are named after the mechanism used for integrating with the

operating system. The netlink datapath is Linux-specific and uses a special

kernel module. The netdev datapath is implemented in userspace.

Datapaths are optimized for high-performance packet processing and they

completely handle most of the packets that come through them. Consequently, the

forwarding tables in the datapaths are not equivalent to the OpenFlow forwarding

tables and a translation mechanism between the two forwarding table formats

is present. The translation is performed lazily. When a packet does not match

any rule in the datapath forwarding table, an upcall is made and the packet is

passed out of the datapath into the upper layers of ovs-vswitchd. ovs-vswitchd
performs a full lookup through the OpenFlow forwarding tables and generates a

new datapath flow rule which gets inserted into the datapath together with the

packet itself.

We use the name fast path to refer to datapath-only packet processing. If the

packet misses all datapath flow rules and generates an upcall, we say that it took

the slow path.

1
digital version of this text contains hyperlinks to the relevant source code
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The netdev datapath The netdev datapath is a multiplatform datapath im-

plementation entirely in user space. All major operating systems are currently

supported.

The netdev datapath supports various configurations according to the system

it is running on. The most basic deployment is rather slow as all packets have to

cross the userspace boundary twice. However, the datapath can be configured

with several types of accelerators significantly lowering the packet processing

cost. The datapath can be accelerated using DPDK [12], AF_XDP sockets [13] or

offloaded to hardware using TC [14].

Our research does not target the netdev datapath.

The netlink datapath The netlink datapath is Linux-specific. It resides

partially in a kernel module and partially in user space. The kernel module does

most of the packet processing. The userspace communicates with the kernel over

a netlink socket, hence the name. Only the slow path passes data from the kernel

space to the user space.

Our research is focused on the netlink datapath as it is the most commonly

deployed datapath in Kubernetes clusters. Unless stated otherwise, the rest of the

thesis always assumes the context of the netlink datapath.

1.7.1 Interactions between the fast path and the slow path
Packets always start their journey in the kernel. They enter the openvswitch
module where they are checked against a set of flow rules stored in the flow

table (OVS’s forwarding table). If a flow rule matches the packet, its actions are

executed. Otherwise, the packet is sent to the user space.

def process_packet_in_kernel(packet):
for flow_rule in flow_table:

if flow_rule criteria match the packet:
execute the flow_rule actions
return

make an upcall to the user space

The slow path gets involved when the fast path fails (no flow rule match) or

when the action in the flow rule explicitly asks for it. The packet is sent to the

user space via a netlink socket in an upcall. ovs-vswitchd receives the packet,

processes it according to the OpenFlow rules and reinjects it back into the kernel.

Additionally, a new flow rule might be generated and installed into the kernel to

speed up the future processing of similar packets.
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The packets in the fast path are not buffered and they are processed immedi-

ately. The slow-path buffers packets when they are passed from kernel to user

space, introducing additional latency.

1.7.2 The fast-path
The data structures

The flow table (struct flow_table) is an in-kernel data structure, which stores

flows rules (struct sw_flow) and allows for fast matching with individual pack-

ets. Similar to OpenFlow flow rules, every datapath flow contains a list of actions

(struct sw_flow_actions), statistics (struct sw_flow_stats), a flow key

(struct sw_flow_key) and a flow mask (struct sw_flow_mask).

The flow key and the flow mask are the matching criteria. The combination

of both of these enables fast matching with the possibility of wildcards. The key

is a complex structure with parsed-out packet header values. It can be created

from any packet with the function key_extract(). The mask specifies which

bits are significant when comparing two keys.

def equals(key1, key2, mask) -> bool:
return (key1 & mask) == (key2 & mask)

The matching algorithm

When the kernel processes a packet, it creates the packet’s corresponding flow

key and looks for matching flows in the flow table. The packet can match any

number of flows, but only the first matching rule is always used. The userspace

component is responsible for preventing overlapping conflicting flow rules.

The flow table stores the flows in a hash table. The lookup key is the masked

sw_flow_key. Therefore, to find a flow for a packet, the kernel has to try several

masks. The lookup procedure could look like this:

def lookup(flow_table, key):
for mask in flow_table.mask_array:

masked_key = apply mask to key
if masked_key in flow_table.flows:

return flow_table.flows[masked_key]
return None

The real implementation (ovs_flow_tbl_lookup_stats) is in principle sim-

ilar, but more optimized:
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1. The kernel keeps mask usage statistics and the mask_array is kept sorted

with the most used masks first (ovs_flow_masks_rebalance()). This

happens periodically based on a time interval.

2. There is already a sk_buff2
hash based on source/destination addresses

and ports. The lookup procedure makes use of the hash by having a fixed

size (256) hash table storing references to their masks. The cached masks

are then tried first. If there is no match, a standard lookup over all masks

follows and the cache entry is replaced with a new flow. This helps with

burst performance.

1.7.3 The actions

The actions in a flow rule are similar to actions in OpenFlow. They are described

in the manpages ovs-actions(7).

Special attention should be given to the recirculation action, which corre-

sponds to the resubmit OpenFlow action. This action resubmits the packet to the

datapath again, updating its flow key’s recirc_id to a new value. This effectively

simulates having multiple flow tables in the datapath with only a single physical

table.

1.7.4 The slow-path

The user space process (ovs-vswitchd) communicates with the kernel over a

netlink socket. When a packet leaves the fast-path, it is temporarily buffered in a

queue (ovs_dp_upcall()) when crossing the kernel boundary.

ovs-vswitchd reads packets from the kernel in several handler threads. The

datapath interface defines a recv() function for receiving a single packet from

the kernel. The netlink datapath implements it with the dpif_netlink_recv()
function.

Higher up, the recv() datapath interface function is used in a generic

dpif_recv() function which also provides an useful tracepoint for measure-

ments. Even higher up the abstraction stack, the recv_upcalls() function

in the file ofproto-dpif-upcall.c reads packets in batches, which are then

processed by handle_upcalls(). The handle_upcalls() function essentially

transforms the list of packets into a list of operations that should be executed on

the datapath. This includes adding new flows to the datapath as well as simply

sending packets where they belong.

2
a kernel structure wrapping all packets
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1.7.5 Additional ovs-vswitchd tasks
Parallel with upcall processing in the handler threads, OVS also runs several

maintenance tasks:

• A balancing task makes sure that when the system is under stress, the most

frequently used flow rules are in the kernel.

• The revalidator threads periodically dump statistics from the kernel and

remove old unused flows. The number of revalidator threads scales with

the number of available cores on the system.
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Chapter 2

Experimental environment

This chapter describes the environment we used for running our experiments. The

information provided here should allow anyone to replicate our measurements.

2.1 Hardware
For our research, we used two experimental clusters with different hardware

configurations. One installation run virtualized on Proxmox VE with only a single

physical host. The other installation used dedicated hardware. When we write

about an experiment and do not specify where it runs, we are presenting results

from the cluster on dedicated hardware. However, most of the measurements can

be replicated in a virtualized environment without a significant impact on the

outcome.

We always used a three-node cluster and we named the nodes kb1, kb2, and

kb3.

Virtualized installation We used the virtualized environment for development

and debugging. The physical host was running Proxmox VE 7.4-3, and it was

configured with an Intel
®

Core
TM

i7-3770 CPU running at 3.40 GHz with 4 cores,

8 threads, and 31.23 GiB of RAM.

The virtual machines used for the cluster nodes were each configured with 4
virtual cores and 4 GiB of RAM. We had initially started experimenting with 2
CPU cores per node to prevent overprovisioning, but our workloads always fully

stressed only one node (always kb2), and we were mostly interested in system

behavior with multiple threads. The overprovisioning did not seem to cause any

problems.

The cluster nodes were equipped with 2 virtual network interfaces connected

to two virtual Linux bridges on the host. We used one interface for system man-
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agement and WAN access. The other bridge was used for cluster interconnect.

We did not artificially limit the throughput or latency of the link between nodes.

When measured between kb2 and kb3 using iperf3 with the default configura-

tion and ping with 100 samples, the throughput was 14.5 Gbps and the average

round trip time 0.383 ms.

Dedicated hardware We used the cluster with dedicated hardware to validate

the results observed in the virtual environment. The nodes were Dell PowerEdge

R730 servers, configured with Intel
®

Xeon
®

CPU E5-2690 v4 running at 2.60GHz

with 14 cores, 28 threads, and 131 GB of RAM.

Similar to the virtualized nodes, the dedicated nodes had 2 network interfaces.

One management 1 GbE network interface was connected to the Internet, and a

different 10 GbE interface was connected to a switch. We configured the switch

to use VLANs to isolate the cluster traffic from all other ports. While we did not

have the opportunity to use a fully dedicated switch, the switch should have had

enough capacity so that it would not be a bottleneck. The average round trip time

between kb2 and kb3 (ping -c 100) was 0.104 ms.

2.2 Software environment

We run our experiments and measurements on a Kubernetes cluster with OVN-

Kubernetes as the CNI plugin and Docker as the container runtime. OVN-

Kubernetes was installed using containerized setup following the official in-

stallation guide [15]. We used Fedora 38 as the base Linux distribution. To allow

reproducibility, we fully automated the installation procedure. Installation scripts

with usage instructions can be found in appendix B.

In our experiments, the three-node cluster always had one node dedicated

as a control node (kb1). We didn’t test cluster installations configured for high

availability (HA). We focused on the internals of OVS, a part of low-level net-

working infrastructure. We do not expect any significant difference between HA

and non-HA clusters.

Our experiments always run onkb2.

2.2.1 OVN-Kubernetes configuration

We deployed a fully containerized OVN-Kubernetes, meaning that even OVS was

deployed in a privileged container. The default OVS container spec file contains

this resource limit:

16

https://github.com/ovn-org/ovn-kubernetes/blob/master/dist/templates/ovs-node.yaml.j2#L84-L90


resources:
requests:

cpu: 100m
memory: 300Mi

limits:
cpu: 200m
memory: 400Mi

We have manually removed this limit for most of our experiments. We have

also tested with the limit active and we always explicitly mention it when this is

the case.

2.2.2 OVS modifications
Instead of the default OVS container, we configured our systems with a modified

version to improve observability. Our changes included:

• We added development tools (e.g. gdb, perf, ...) to the container image.

• We recompiled ovs-vswitchd to include additional user statically-defined

tracing (USDT) [16] probes

• We included debug symbols in the ovs-vswitchd executable

Implementation details and instructions on how to replicate our build are in

appendix A.

2.2.3 Kubernetes configuration
We always deployed three different pods to the Kubernetes cluster. The spec files

are attached to this work. The pods were:

• arch on kb2 – a pod running the latest Arch Linux Docker image. We used

this pod for the main part of our experiments.

• victim on kb2 – again, a pod with the latest Arch Linux image. We used it

to measure the impact of our experiments on pods sharing the same node.

• reflector on kb3 – a privileged Arch Linux container with a custom

raw-socket-based packet reflector and iptables rule preventing the kernel

from sending ICMP connection refused packets. The reflector swapped the

Ethernet and IP addresses in the received packets and sent them out again.

17



2.2.4 Experiment implementation
We developed our experiments mainly in Rust. Everything is contained within

one project in a tool we call the analyzer. In the few cases when Rust was not

the best language for the task, we embedded scripts in other languages (mainly

Bash and Python) in the Rust executable itself. Our Rust code always provides an

entry point.

The main reasoning behind the language and architecture choice was personal

preferences and ease of distribution – the ability to create a single statically-linked

executable that would work almost anywhere.

Implementation details and usage instructions are in appendix C.

2.2.5 Clock synchronization
All our experiments use Linux’s CLOCK_MONOTONIC clock for timekeeping. Be-

cause we measure everything on a single node, kb2, the clock is perfectly con-

sistent across different containers. There could be small discrepancies due to

synchronization between CPU cores and scheduling, but we are mostly con-

cerned about larger time scales so we assume these discrepancies will not affect

our results.
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Chapter 3

Experiments

Origin of the experiments At the beginning of our research into the perfor-

mance and scalability of common Kubernetes and Open vSwitch configurations,

we did not know which part of the networking stack will lead to interesting

results and where to focus on. So we started practically experimenting with

packet handling and always continued based on our previous results. In the end,

our exploration led us to focus on upcall handling and flow rule management.

As we showed in chapter 1, OVS inserts flow rules into datapaths on demand

after upcalls. Therefore packets generating upcalls are more expensive to process

than the other packets. We tried to create a network traffic, which would reliably

generate upcalls to study the behavior of OVS under stress. This chapter describes

the details of our research.

The experiments We split our research into the following parts:

1. We investigated flow rule handling in OVS. If we sent the same packet twice,

the second will always hit a rule in the datapath and it will not generate

an upcall. Except for cases, when the flow rule is already removed. When

does that happen? When are flow rules removed from the datapaths? We

investigated this in section 3.1.

2. What is the cost of an upcall? How much slower is the slow path compared

to the fast path? Can we infer whether upcall-only traffic will be a significant

performance problem? (section 3.2)

3. Once we knew the flow rule timeout, we could investigate packet types

generating upcalls. Which packet header values lead to a generation of new

flow rules? (section 3.3)
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4. The last and most significant part - what is the impact of artificial upcall-

only traffic on the performance of the whole system? We investigated this

in section 3.4.

Most of the questions above can be approached using both static and dynamic

analysis (analyzing the source code or analyzing the behavior of a running system).

At the beginning of our investigation, we were not familiar with the relevant code

and we also did not know what exactly to focus on, so we always started with

a dynamic analysis, because it allowed us to observe the behavior of the whole

networking stack. After the initial practical experiment, we searched for the code

causing the observed behavior.

In the following sections, we discuss the design of our experiments and their

results. Every following section corresponds to one of the investigation parts

mentioned above.

3.1 Flow eviction timeout

We can observe an effect of an upcall using the ping tool. The first packet has

higher latency than the rest of the ICMP packets because it generates an upcall

and a new datapath flow rule (can be verified by ovs-dpctl dump-flows).

[ root@kb2 ~]# ping -c 5 kb3
PING kb3 (192.168.1.223) 56(84) bytes of data .
64 bytes from kb3 (192.168.1.223): icmp_seq =1 ttl =64 time =1.19 ms
64 bytes from kb3 (192.168.1.223): icmp_seq =2 ttl =64 time =0.404 ms
64 bytes from kb3 (192.168.1.223): icmp_seq =3 ttl =64 time =0.365 ms
64 bytes from kb3 (192.168.1.223): icmp_seq =4 ttl =64 time =0.424 ms
64 bytes from kb3 (192.168.1.223): icmp_seq =5 ttl =64 time =0.304 ms

--- kb3 ping statistics ---
5 packets transmitted , 5 received , 0% packet loss , time 4062 ms
rtt min/avg/max/ mdev = 0.304/0.536/1.185/0.326 ms

Listing 3.1 Output of the ping command in the virtualized environment

To repeat the observation, we must not send similar ICMP packets for several

seconds. The higher latency is measurable only when we wait. This behavior

can be explained by a flow rule eviction timeout that removes the rule from the

datapath’s forwarding table.

Assuming the timeout stays constant, we can measure it by varying the

interval between ICMP packets. The dependency between the measured latency

and the time delay should be constant except for one sharp increase in latency

when the delays get longer than the timeout.
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Our experiment We experimented in the following way:

1. Generate a random number D in the interval [8; 12]

2. sleep for D seconds

3. run ping -c 3 -i 0.01 192.168.1.221

4. log D and both round trip times

5. go to step 1 until we have enough samples

We chose the interval based on non-rigorous preliminary experiments. After

plotting RTT’s dependence on the delay D, we expect to see:

• The first RTT data points will form a line with a sharp increase at a value

of D corresponding to the eviction timeout

• The second RTT data points will form only a single horizontal line.

• The third ping will have the same results as the second.

The practical nature of this experiment allows us to check OVS’s configuration

even on systems where we do not have privileges to access OVS directly.

3.1.1 Results
The eviction timeout The measured latencies of the experiment (figure 3.1)

show the flow rule eviction taking effect about 10 seconds after the last datapath

rule installation. The observed value is not exact, but it is probably reasonable

to assume the developers chose a nice-looking number. We hypothesize that the

noise in the location of the increase is introduced mainly by infrequent eviction

checks.

Following these experimental findings, we searched the source code and it

specifies exactly 10 seconds as the default eviction timeout. The experimental

findings are consistent with the source code. The default rule timeout is defined

in the file ofproto/ofproto.h as:

#define OFPROTO_MAX_IDLE_DEFAULT 10000 /* ms */

The file ofproto/ofproto-dpif-upcall.c contains the code enforcing the

timeout in the function revalidate():
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Figure 3.1 Results of the eviction timeout experiment

if (kill_them_all || (used && used < now - max_idle)) {
result = UKEY_DELETE;

}

The eviction is handled by the revalidator threads, which run periodically

roughly every 500ms. This confirms our hypothesis about the 500ms spread of

the observable timeout effect.

// in file ofproto/ofproto.h:321
#define OFPROTO_MAX_REVALIDATOR_DEFAULT 500 /* ms */

// in the ofproto/ofproto_dpif_upcall.c:1052
// in function udpif_revalidator()
poll_timer_wait_until(start_time + MIN(ofproto_max_idle,

ofproto_max_revalidator));

Difference in latency below timeout Figure 3.1 shows a difference between

round trip times for the first and second packet even for delays shorter than the

eviction timeout. The difference is small, so we assume that this can be caused by

CPU caches. We did not investigate this further.

Increase in round trip time of the second ping Figure 3.1 also shows an

increased latency for the second ping after the eviction timeout. We hypothesize
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that it could be caused by the fixed size flow lookup cache described in section 1.7.2.

The upcall installs the new flow, but the lookup cache is filled only after the first

use (i.e. the second packet of the flow, the second ICMP ping). In other words, if

we would send multiple packets, their journey through the openvswitch module

would be as follows:

1. A cache miss, followed by a flow table miss. Leads to an upcall and a new

flow rule.

2. A cache miss, which requires a full flow table scan. The cache is filled.

3. Cache hit.

4. All consecutive packets hit the cache unless the cache entry is somehow

overwritten.

The third RTT measurement behaves as expected by our hypothesis. We

shortly experimented with even more consecutive measurements and they were

all the same.

3.2 Cost of an upcall
Eelco Chaudron investigated the cost of an upcall in OVS [17] using eBPF probes

in the Linux kernel. His experiments show that processing a packet through the

slow path can take anywhere between 150 µs and 10 ms extra compared to the

fast path. However, as we saw in the previous section, upcalls have visible effects

outside of the kernel and we can measure them directly.

The unchanged experiment devised in the previous section provides us with

a direct measurement of the observable upcall effect. The difference between the

first packet RTT and the second packet RTT should correspond to how much

time an upcall costs.

This experiment assumes that ICMP packet processing in OVS is the same

as for all other types of packets. We believe this is most likely correct because

OVS generates datapath flow rules for handling ICMP packets the same as it does

for all other packets. Also, we did not find any evidence of ICMP packets being

handled specially.

3.2.1 Results
Upcall processing cost As discussed in chapter 3, the round trip time increase

can be attributed to the cost of upcall processing. In the previous section, we

noticed an increased latency with the second RTT measurement, possibly a cache
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miss in the kernel datapath. We can estimate the cost of an upcall using this data.

We calculated the difference between the first and the second ping measurements

and assume the result is the lower bound for the upcall cost. Either our hypothesis

about the cache miss is correct. Then the difference would be exactly the time

spent processing the upcall. Or, we are wrong and the higher second ping latencies

are caused by some additional factor that is not normally present. In that case,

the upcall cost would be certainly equal to or higher than our result. For our

calculation, we used only latency measurements with the delay since the previous

measurement larger than 10.5 seconds.

First ping RTT Second ping RTT Difference
#samples 1596 1596 1596

Mean 1399.94 483.66 916.28
SD 162.74 59.73 154.52

Min 769 250 149
25th percentile 1300 467 814

Median 1410 488.0 935
75th percentile 1520 504 1031

Max 2030 878 1460

Table 3.1 Statistics of measured round trip times when the interval > 10.5 seconds

The mean of the latency difference is within 916.28 ± 7.59 µs with 95% confi-

dence.

Comparison to previous results We can not directly compare our results

with Eelco Chaudron’s because we do not have the same test environment. Under

simulated normal conditions, he concluded that the time from the kernel’s upcall

invocation til the kernel’s packet execution is on average 149.83 µs (n = 56446).

Our results are 6x higher. In the same article, he notes:

My sample runs have shown what I want to emphasize in this article:

The way the upcalls are generated highly influences the outcome of

the upcall costs.

And he shows that under stress, the average upcall cost can be 29367.91 µs
(n = 13807). Therefore, all we can say is that our results are in the range of

possible upcalls costs according to his article.

Due to the variance, these results also do not allow us to estimate the impact

of an upcall heavy traffic on the overall system performance. According to

Chauldron’s article, the upcall processing is batched and therefore individual

upcalls have a different associated latency cost than an upcall flood.
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3.3 Packets generating upcalls
To stress-test the slow path, we have to be able to generate upcalls consistently.

We have to find types of packets that will repeatedly miss all installed flow rules

in the OVS datapath.

Our experiment sends varying packets in batches based on their type and

monitors the upcalls and flow table changes using kprobes in the kernel and user

statically-defined tracing (USDT) probes in ovs-vswitchd.

The flow rules in OVS datapaths use the struct sw_flow_key to represent

the flow key. For every field of that structure, our measurement tool sends 1000

packets with the corresponding packet header field randomized and everything

else fixed at arbitrary values.

For example, let us consider the IPv4 TTL field. Given any valid IPv4 packet,

we want to send the same packet (bytes) 1000 times, each time with random bits

in the location of the TTL header field. The values of all other header fields except

for TTL stay fixed, so that their changes do not generate any new flow rules.

We used the Scapy project to generate the packets. The following code snippet

is an example from our tool:

tag("IP(ttl)")
sendp(

Ether(dst="aa:bb:cc:dd:ee:ff") / IP(
dst="10.244.1.1",
ttl=RandByte()

),
count=1000

)
sleep(11) # more than the eviction timeout

Because we probed a running system and we did not analyze all code paths, we

cannot be certain that we covered all possible cases for generating new flow rules.

We can draw some general conclusions from the measurement results and look

into the source code for additional insights. There is always the possibility that we

missed something. However, a complete static analysis would be extremely time-

consuming. The results depend on OVS, the whole SDN, and its configuration.

The search space is just too large. For that reason, we did not attempt to use static

analysis to verify or expand upon our results.

3.3.1 Results
Figure 3.2 shows the number of upcalls generated after sending 1000 crafted

packets differing only in a value of a specified header field. We are interested
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Figure 3.2 Number of upcalls generated by varying certain header fields in packets
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in the peaks of the plot, as they signify packet types that consistently generate

upcalls. The most significant being varying Ethernet source addresses and address

fields in ARP packets.

3.3.2 Analysis
Ethernet source addresses

Varying the Ethernet source address in the unicast range (the least significant bit

of the first byte has to be 1) generates new upcalls. The flow rules being inserted

into the flow table are similar to the following example
1
:

recirc_id(0),in_port(9),
eth(src=04:6a:68:88:2b:eb),eth_type(0x0800),ipv4(frag=no),
packets:0, bytes:0, used:never, actions:drop

OVN has a feature called port security which can be enabled for logical

switch ports. By enabling port security on a port, MAC spoofing is prevented

and all packets with the wrong MAC address are dropped. OVN-Kubernetes

enables this feature. The command ovn-nbctl list Logical_Switch_Port
prints configuration for all logical switch ports, including information about port

security. The following snippet is part of the command’s output, a description of

the logical switch port used for our test pod called arch.

_uuid : cc7a2d01-52b4-4529-a026-55bf9d46dc56
addresses : ["0a:58:0a:f4:01:05 10.244.1.5"]
dhcpv4_options : []
dhcpv6_options : []
dynamic_addresses : []
enabled : []
external_ids : {namespace=default, pod="true"}
ha_chassis_group : []
mirror_rules : []
name : default_arch
options : {

iface-id-ver="40c48294-7f78-4cc0-8a74-cffd9ecec647",
requested-chassis=wsfd-netdev65.ntdv.lab.eng.bos.redhat.com

}
parent_name : []
port_security : ["0a:58:0a:f4:01:05 10.244.1.5"]
tag : []
tag_request : []
type : ""
up : true

1
dumped with ovs-dpctl dump-flows
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Quoting the OVN documentation [18], a section about the port security

option
2
:

This column controls the addresses from which the host attached to

the logical port (”the host”) is allowed to send packets and to which

it is allowed to receive packets. If this column is empty, all addresses

are permitted.

Each element in the set must begin with one Ethernet address. This

would restrict the host to sending packets from and receiving packets

to the ethernet addresses defined in the logical port’s port_security

column. It also restricts the inner source MAC addresses that the

host may send in ARP and IPv6 Neighbor Discovery packets. The

host is always allowed to receive packets to multicast and broadcast

Ethernet addresses.

The port security flow rules are added in OVN, in controller/lflow.c in

function consider_port_sec_flows(). OVN adds multiple OpenFlow rules

into multiple flow tables to implement port security.

Because OVS’s datapath flow rules are much simpler than OpenFlow flow rules,

there is no 1-1 mapping between them. Moreover, the datapath flow rules allow

only positive matches (see section 1.7.2). They cannot express negative matches.

Therefore, when we send packets with varying MAC addresses, ovs-vswitchd
evaluates the packets against the OpenFlow rules and finds out that the packet

should be dropped. The newly generated datapath flow rule checks for an exact

match on the random MAC address and is not generic to match any other packets.

Looking at the problem from the other side, OVS’s datapath is designed to

assign packets to logical flows and execute the flow actions in as few instructions

as possible. There are no precedence rules in the datapath flow table, the first

matching rule is used and the order of insertion is not maintained. There are also

only positive matches, no negative matches. Therefore, a single rule to drop all

packets except for those with a given MAC address is impossible to construct.

ARP packet fields

ARP packets with varying hardware addresses behave the same as ordinary

Ethernet packets with varying source hardware addresses because port security

in OVN applies to them as well.

2
The documentation calls it a column because the configuration is stored in a database column
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Other types of packets

OVN’s documentation states that IPv6 Neighbour Discovery (ND) packets are also

covered by the port security setting and we should therefore be able to observe

the same behavior as with ARP packets. However, we did not generate any upcalls

with the ND packets. There are two likely options why this is the case:

• We did not configure the cluster properly for dual-stack networking with

both IPv4 and IPv6.

• We might have crafted invalid IPv6 ND packets.

Either way, we expect that IPv6 ND packets are also a potential problem and

they should be checked as well when developing a fix.

3.4 Impact of upcall-heavy traffic
Stress testing tool From the previous experiment, we learned that randomized

unicast Ethernet source addresses generate upcalls. We used this knowledge

to write a custom tool for sending minimalistic Ethernet frames. The Ethernet

header needs only 14 bytes, but we used 16-byte packets due to slightly better

performance. Instead of randomization, we filled the source Ethernet addresses

with an increasing integer sequence.

Our tool is optimized for controlled and regular packet generation. Configured

with a time interval between packets or a desired packet frequency, it tries to

send packets as regularly as possible:

start_time = clock()
sent = 0
while True:

now = clock()
while we should have sent more packets than we sent:

sent a new packet
sent += 1

sleep( until next packet is scheduled )

Only instead of sending the packets one by one every time, we send them in

batches using io_uring if it is possible. When we set the interval to 1 ns (zero

is not possible due to division by zero), we can reach roughly 210k packets per

second in a single thread on the dedicated test server.
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Figure 3.3 ovs-vswitchd stressed with 50k upcalls per second

The experiment For our experiment, we stressed OVS using our tool and

monitored the system. We mainly measured OVS’s memory consumption, the

load average of the whole system, latencies from the victim pod to the node

kb1 (ICMP) and to the reflector pod on kb3 (UDP). We mainly expected an

increased processing time and therefore increased latencies compared to latencies

in an idle system. We also focused on memory consumption and CPU load

because we noticed resource limits placed upon OVS containers in the default

OVN-Kubernetes deployment configuration. The experiments always started

with a freshly restarted ovs-vswitchd.

3.4.1 Performance with unlimited resources
Flow table size Figure 3.3 and figure 3.4 show the recorded behavior of

ovs-vswitchd stressed with a significant number of upcalls. Assuming the

10-second flow rule timeout would be the only criteria for evicting flow rules, the

flow tables should have reached 500k and 150k flow rules respectively. However,

ovs-vswitchd has a default limit of 200k flow rules in the flow table which

explains the lower-than-expected table size in figure 3.3. Moreso, the flow table

size limit is dynamic based on measured system performance (more detail in

section 3.4.2) and 200k is only a hard limit beyond which the table will never

grow. The dynamic increase of the flow limit until the hard limit is reached is

visible at the beginning of figure 3.3.

In both experiments, the flow table size fluctuates. With fewer upcalls, when
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Figure 3.4 ovs-vswitchd stressed with 15k upcalls per second

only the timeout is at play, the fluctuations are small and can be explained by

periodic timeout enforcement in the revalidator threads in ovs-vswitchd. When

the flow table size hits the 200k limit, an additional regulatory mechanism in the

revalidator threads activates. Quoting a comment
3

from OVS’s source code:

In normal operation we want to keep flows around until they have

been idle for ’ofproto_max_idle’ milliseconds. However:

• If the number of datapath flows climbs above ’flow_limit’, drop

that down to 100 ms to try to bring the flows down to the limit.

• If the number of datapath flows climbs above twice ’flow_limit’,

delete all the datapath flows as an emergency measure. (We

reassess this condition for the next batch of datapath flows, so

we will recover before all the flows are gone.)

In other words, the revalidator thread checks flow rules in batches and when-

ever the flow table grows above the limit, a shorter eviction timeout is applied to

the current batch. We hypothesize that the high amplitude of the fluctuations is

caused by synchronization between multiple threads. There are multiple reval-

idator threads, each has its flow rule dump thread and the actual rule deletion is

3https://github.com/openvswitch/ovs/blob/474a179aff6c/ofproto/
ofproto-dpif-upcall.c#L2771-L2782
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handled in the kernel after receiving a deletion command over a netlink socket

which has an internal queue. We did not confirm nor disprove the hypothesis.

System load Because our packet flooding tool is a single-threaded application,

it directly contributes to the load averages only by a value of 1 or less. However,

we observe a significantly higher load average in both figure 3.3 and figure 3.4.

Except for our running experiment, the system is idle. Hence, we attribute the

additional system load to OVS. As we discussed before in section 1.7.5, OVS uses

multiple threads during normal operation. By default, the revalidator threads

iterate over the whole flow table every 500 ms and command the kernel to delete

flow rules. The upcall handlers continuously translate OpenFlow rules to datapath

rules and command the kernel to insert new flow rules. All of this busy work

causes the extra system load.

Worryingly though, the additional system load is not attributed to the process

causing it. In Kubernetes, a container can have a resource limit [19]. Flooding the

system with upcalls from a resource-limited container would allow it to stress

the system beyond its allowance.

Memory usage In both figure 3.3 and figure 3.4, the resident set size of

ovs-vswitchd increases and stabilizes at slightly less than 2GB. The allocated

memory is never released back to the operating system and stays allocated to the

process even after the flooding stops. The used memory seems to be proportional

to the flow table size.

Same as with the system load, memory usage bypasses resource accounting. A

container or a VM with minimal resource allowance can thus use more resources

than the system administrators configured. However, the memory usage of

ovs-vswitchd is capped at a constant regardless of the number of containers

used to flood the system. Therefore, this is not a significant attack vector.

Impact on latency

Figure 3.5 shows the results of a different run of the same experiment. The plot

shows only the latencies measured from the victim pod. The ICMP tests target

the node IP address of kb1, and the UDP tests target the reflector service

provided by a pod on kb3. The horizontal lines mark the ranges of samples used

for a statistical test.

While there does not seem to be any substantial difference between the

stressed and non-stressed systems in the round-trip times, the non-stressed UDP

samples (n = 1876, x̄ = 175980 ± 1320 ns4
) are smaller than the stressed UDP

495% confidence interval, assuming normal distribution
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Figure 3.5 Round trip times during 50k upcalls/sec stress test

samples (n = 2255, x̄ = 164404 ± 1174 ns) with statistical significance (Welch’s

t-test, p = 2.17 · 10−37
). The difference between the means is 11576 ns.

3.4.2 Performance when resource limited
In section 3.4.1, we talked about extra memory and CPU usage of ovs-vswitchd.

The default containerized deployment of OVN-Kubernetes limits ovs-vswitchd
to 400 MiB of physical memory and two-tenths of a single CPU core. In the

remainder of this section, when we write about limiting memory or CPU, we mean

using Kubernetes to enforce the resource limit just as the default containerized

deployment does it.

Memory limit

We limited the memory usage of ovs-vswitchd, leaving the CPU time unlimited.

We used the default values for the memory limit, leaving us with the following

configuration of the OVS container:

resources:
requests:

memory: 300Mi
limits:

memory: 400Mi
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When we flooded the system with upcalls, ovs-vswitchd crashed without

leaving any meaningful error message behind. During normal operations, every-

thing seemed normal.

We tried to limit the number of flow rules using the following command:

ovs-vsctl set Open_vSwitch . other_config:flow-limit=10000

The limit helps and when the upcall frequency is not too high (double or triple

the limit), everything works. However, once we flood the network with even

more packets, the flow limit is overshot and ovs-vswitchd again crashes.

Our theory is that the crash happens during the revalidator dump phase,

when ovs-vswitchd makes a copy of all in-kernel flow rules in the userspace.

This allocates more memory than allowed and the container is subsequently

terminated by the OOM killer. Quoting Kubernetes Documentation [20]:

A Container can exceed its memory request if the Node has mem-

ory available. But a Container is not allowed to use more than its

memory limit. If a Container allocates more memory than its limit,

the Container becomes a candidate for termination. If the Container

continues to consume memory beyond its limit, the Container is

terminated. If a terminated Container can be restarted, the kubelet

restarts it, as with any other type of runtime failure.

The decreased flow limit in the configuration of OVS does not help much to

prevent crashes, because we can inject too many flows in between the revalidator

thread runs (we can inject about 100k flow rules in 500ms, ovs-vswitch crashes

even with less).

CPU limit

When CPU bound, ovs-vswitchd does not crash. It tries to do the opposite

and dynamically changes the datapath’s flow rule limit based on the revalidator

thread’s performance:

duration = MAX(time_msec() - start_time, 1);
udpif->dump_duration = duration;
if (duration > 2000) {

flow_limit /= duration / 1000;
} else if (duration > 1300) {

flow_limit = flow_limit * 3 / 4;
} else if (duration < 1000 &&

flow_limit < n_flows * 1000 / duration) {
flow_limit += 1000;

}
flow_limit = MIN(ofproto_flow_limit, MAX(flow_limit, 1000));
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Figure 3.6 5k upcalls/sec stress test

We can see the effect of this code in figure 3.6. The red dots signify the

dynamic flow limit. The horizontal lines going to the right of the dots signify the

time the revalidator run took. We can see that a long revalidator run leads to a

decreased flow limit.

When compared to the previous experiments:

• The rate of upcalls is only 5000 per second, one-tenth of the experiments

before.

• Memory usage stays almost constant.

• Load average (1 minute) peaks at the value 2, but stays below 1 most of the

time.

• The size of the datapath flow table varies a lot more. We can see the same

higher frequency variations as before, but now they are combined with

lower frequency variations created by the dynamically changing flow limit.

• Latency measurements are added to the plot (beware of the unusual units).

The measurement method is the same as when we talked about latency

before, now combined into a single experiment. The highest round-trip

time observed is around 10 seconds long. Sometimes, sending a packet

completely fails (indicated by thicker dots below the number line). The

lines signify when the packet was in-flight.

35



The extremely high round-trip times can be explained by the upcall buffer

queues. When the revalidator threads and other tasks use most of the available

resources, the handler threads might not get scheduled and the packets in upcalls

are buffered until the handler threads run again. This explains the regular packet

delivery pattern (the green diagonal lines on the plot). They are caused by a

regular packet-sending interval and a single instant when all the packets are

delivered in one big batch.

Flood with 200k packets per second When we send 200k packets per second

(close to the limit of our tool’s single-threaded performance), ovs-vswichd does

not crash, but no network traffic is getting through. The victim pod on the same

host was unable to receive any packet.

Interestingly, when we stop the stress test, the number of flow rules still

oscillates for a couple of seconds before dropping to normal levels. This indicates

that our hypothesis about queues in front of the handler threads was correct and

that there are a lot of packets queued for processing.

CPU and memory limit

When we use the default configuration with both CPU and memory limits,

ovs-vswitchd is still killed by OOM killer under extreme stress (200k upcall

generating packets per second), even though the memory usage stays below the

limit most of the time. The crashes are however not reliable and sometimes,

ovs-vswitchd runs normally for a while. The problem seems to be caused by a

race condition between the flow limit calculation in revalidator threads and the

handler threads inserting new flow rules. The crash happens when we change

something - either at the beginning of a stress test or at the end, regardless of

how long it is.

3.4.3 Overloading ovs-vswitchd without resource limits
The crashes of ovs-vswitchd led us to search for a possibility of a crash when

overloaded without resource constraints. We tried to spawn multiple instances

of our packet flooding tool, intentionally more threads than we had CPU cores

available. On the 28-core dedicated test servers, we did not manage to crash

ovs-vswitchd with anywhere between 1 and 80 instances of our stress tool.

We believe that ovs-vswitchd is safe from crashes as long as it runs without

resource constraints. On our experimental clusters, ovs-vswitchd is automat-

ically configured as a higher priority process than the ordinary processes and

therefore it gets enough CPU time. But even if we manually decrease the priority

to the same level or below ordinary processes, ovs-vswitchd does not crash.
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Chapter 4

Discussion

4.1 Generality of our results
To test our results in the real world, we have arranged a meeting with a large

computing infrastructure provider
1

using OVS. Their OVS instances are managed

by OpenStack’s Neutron [21] instead of our OVN-Kubernetes. They use VMs

whereas we used containers. The biggest common factor between their system

configuration and ours is the use of OVS.

We did not get access to the hypervisors (nodes of the cluster) and OVS

directly, but we were given a full VM to run the tests. And for a limited time, we

talked with one of their administrators who probed the hypervisors following

our guidance. We have conducted the following experiments:

• First, we have confirmed the presence of OVS by running the flow eviction

timeout experiment. The results on their system were as expected with an

observable increase in latencies at the 10-second mark. Interestingly, the

extra latencies caused by upcall processing were observable only within

the cluster itself, not when communicating over the default gateway. We

do not know why.

• We tried running our packet flooding tool with the varying MAC addresses.

According to the administrator, it did not affect the number of installed dat-

apath flows. However, due to an increase in the CPU load caused by QEMU

processes, we hypothesize that the packets were dropped by libvirt before

they reached OVS.

• After the unsuccessful stress test, we tried looking for packets causing

upcalls and installation of new flow rules. Because we did not get access to

1
intentionally unnamed
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OVS itself, we had to rely on the administrator’s observations. We did not

run the experiment to its completion due to time constraints. But we still

found that packets with VLAN tags (even nested) generate new flow rules,

specifically drop rules for individual VLAN tags. Using this knowledge

and a simple Scapy script, we managed to increase the flow table size from

around 100 entries to 90000, but we could not get any higher than that. We

were told that there are some QoS rules preventing network abuse that we

might have run into. Another limiting factor might have been the limited

performance of Scapy which prevented us from generating large enough

traffic.

Based on this short experiment, we conclude that our findings apply to differ-

ent OVS configurations and generalize well.

4.2 Possible OVS improvements
Throughout our experiments, we have identified several areas in OVS that we

believe could be immediately improved upon:

• In in ovs-vswitchd, instead of a fixed flow eviction timeout, enforce the

flow limit by using a PID controller and a variable eviction timeout.

• Free unused memory

• Remove the resource limits in OVN-Kubernetes default container configu-

ration

Other areas require better investigation before they can be improved, but we

believe that it is worth the effort:

• Gracefully handle out-of-memory conditions

• Investigate how best to prevent upcalls when using OVS as a firewall

4.2.1 Flow limit with a PID controller
In section 3.4.1, we explored how ovs-vswitchd enforces the limit of the number

of flows in the kernel flow table. In section 3.4.2, we followed up with additional

details on how the limit is calculated. We believe that a PID controller would

prevent the unstable oscillating behavior we saw in figure 3.6.

There are multiple possible implementations and we do not have enough

data to say which one would work the best. We would suggest doing one of the

following:
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• There could be a single PID loop taking the runtime of the revalidator

threads as input. The output would be the current size limit of the flow

table. Another PID loop would take the real number of flows in the flow

table and output the flow eviction timeout.

• A single PID loop could generate the eviction timeout. An additional emer-

gency mechanism would be needed to prevent accidental overfilling.

4.2.2 Free unused memory

In section 3.4.1, we observed that memory is never released in ovs-vswitchd
after it has been allocated. It is technically not leaked, because ovs-vswitchd
will reuse the memory whenever there is a need. But under normal circumstances,

there are not that many flows.

While there could be reasons for not releasing the allocated memory (e.g. it

would require synchronization), we think that it could be a problem in deploy-

ments on hardware with limited resources.

Alternatively, the maximum number of flows could be by default dependent

on the amount of system memory. Defaulting to using 10% of system memory at

most seems as a better solution compared to allocating fixed 2GB.

4.2.3 Default OVN-Kubernetes configuration

In section 2.2.1 we talked about the default resource limit of OVS deployment in

OVN-Kubernetes. We suggest completely removing the limit. Unless the crashes

and extremely high latencies can be prevented, limiting OVS’s resources currently

introduces more problems than it solves.

To limit memory usage without strict limits, default maximum size of the flow

table could be decreased from 200k to a small fraction of it.

4.2.4 Out-of-memory conditions

In section 3.4.2, we observed crashes of ovs-vswitchd when we limited the

available physical memory. While we understand, that reacting to limited memory

is not simple, we believe that a graceful degradation of functionality would be

preferred when it comes to networking infrastructure. Moreover, there seems to

be a correlation between the number of flows in the flow table and memory usage.

It should be possible to limit the number of flows not only based on computation

time but also based on the amount of available memory.
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While appealing in theory, we think that a practical implementation would

require better insight into how memory is allocated and used. Therefore improve-

ment of this requires further research.

4.2.5 OVS as a firewall
In section 3.3.2, we have found a design flaw in OVS that prevents OVS from

effectively blocking traffic. OVS allows only positive matches in its datapath flow

rules. Negative wildcard matches can currently be handled only in userspace. Out

of the issues we have discovered, we believe that this is the most complicated one

to fix.

Fix without changing the datapath interface

Changing the datapath interface might be undesirable because a similar interface

is also implemented in hardware [22]. Additionally, the hardware offloaded

processing is very likely to have the same issue and we want to prevent upcall

generation there as well. Therefore, we might want to generate ordinary datapath

flow rules which would drop the invalid packets. This is however impossible

without eliminating the possibility of a significant growth in the number of flow

rules.

Exponential upper bound In general, let us assume an OpenFlow table with

a default drop rule and several exact match rules accepting the packet (e.g. re-

submitting it to a different table). Every rule matching a packet is equivalent to a

logic formula where the variables represent bits of the flow key. Specifically, the

formula is a conjunction. The whole table can be therefore expressed as a single

DNF formula matching valid packets. Let us call the formula F .

Now, let us express the formula matching packets that should be dropped.

¬F is true for all invalid packets. However, it is not in DNF anymore, so we

cannot translate it directly back. Using De Morgan’s laws, we can rewrite ¬F
as a CNF formula of the same length. Then, we have to convert it back to DNF.

However, the conversion of a CNF formula to a DNF formula could potentially

lead to exponential growth in the number of clauses. Therefore, a potentially

exponential explosion in the number of flow rules we need to drop the packets.

Practical implementation It might still be practical to use this technique to

implement simple port security and allow only a single MAC address on a switch

port. That would require only 49 rules - 48 to drop invalid packets, a single rule for

recirculation of valid packets. However, expressing anything more complicated is

probably impractical due to drops in performance.
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Fix with a change in the datapath interface

If we allow ourselves to change the datapath interface and in turn the kernel

module, the fix can be implemented relatively easily. We could leave the processing

as is and add packet filtering before the datapath makes an upcall. For example, in

the kernel module, we could add a second, negative, flow table for upcall filtering.

Any packet it would match would get dropped and not sent to the user space. The

used flow key and most of the other data structures could stay the same, only the

interface would have to include new commands for manipulating the negative

flow table.

4.3 Recommendation for public cloud providers
Our findings certainly impact public cloud providers using OVS. We would rec-

ommend at the very least:

1. Verify, that ovs-vswitchd is running without any resource constraints.

2. Monitor the number of flows in the flow tables (i.e. ovs-dpctl show) and

trigger a warning whenever the number of flows reaches the limit.

In case the cloud provider uses OVS for firewalling, we would recommend

switching to some other technology. OVS is in our opinion currently unsuitable

for blocking undesirable traffic with high performance.

4.4 Results coverage
As we mentioned before, the SDN networking stack consists of multiple complex

components all interacting with each other. The problems we identified are by

no means the complete list of problems of SDNs using OVS. We can only say that

we found some problems and there might still be many more.

If we limit ourselves to OVS only, the same still applies. We cannot say

with high confidence that our research covered all possible issues caused by

pathological traffic patterns. There might still be more to discover.

4.5 Future work
We suggested practical improvements to OVS in section 4.2. There is also still

space for more theoretical and experimental research, even though we do not

know about any directions likely to yield significant results. We did not pursue
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investigations into the following areas and they may be a potential topic for

additional research:

• We have not verified the translation mechanism between OpenFlow and

datapath flow rules in ovs-vswitchd for optimality. There is a possibility

that inefficiencies in the translation mechanism could be abused to generate

upcalls similar to our results.

• Similarly, we have not explored what happens during network reconfigura-

tion and whether the transition can cause performance issues.
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Conclusion

We started our research with the goal of finding traffic patterns causing perfor-

mance issues in OVS and OVN-Kubernetes. We successfully achieved this goal

by discovering OVN’s port-security feature, which can be abused to generate an

upcall and install a new flow rule for every received packet. We showed that this

behavior cannot be easily prevented and that it requires either changes to the

datapath interface or changes to flow rule generation in ovs-vswitchd.

Additionally, using our findings, we stressed OVS with upcalls and discov-

ered, that the default resource limits for OVS in OVN-Kubernetes cause more

problems than they prevent. Namely, they lead either to crashes of OVS due to un-

handled out-of-memory conditions or complete network denial-of-service when

ovs-vswitchd is CPU limited. With unconstrained resources, OVS handled the

stress test rather well.

Unfortunately, due to the inherent complexity of OVS and software-defined

networks in general, we cannot rule out the existence of other performance

issues in the OVS’s kernel datapath. In particular, we cannot prove that it is not

possible to generate different kinds of packets which will reliably generate upcalls.

As we have seen with our results, the problem is directly caused by OpenFlow

configuration generated with an external tool to OVS (e.g. OVN). While this led

us to discover a design flaw in OVS, it might be possible to directly exploit a

specific set of OpenFlow rules to generate upcalls and stress OVS in a similar

manner.

As a result of our work, we have outlined the possible improvements in

chapter 4. We do not know whether our suggestions are directly applicable as

improvements, however, at the very least we provide a list of areas in OVS’s code

base that could be improved.
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Appendix A

ovs-vswitchd container image

A.1 Build
There is a script build_ovs_container.sh attached to this thesis. Running this

script will download and compile OVS, OVN and OVN-Kubernetes and at the

end, wrap the result into a container usable for deployment into a cluster. We

recommend reading the script first before running it. It is not long and it might

be desirable to tweak it.

To run the script, make sure that you have these dependencies installed on

your system:

• podman, ideally configured for rootless operation

• git

• go compiler

The script creates a container image by default called ovn-kube-f:latest.

To use it further in the cluster, push it to an accessible container registry
1

and

note its fully qualified name.

A.2 Our changes to OVS
All changes we have made to OVS can be seen in the ovs-usdt-probes.patch
file. We have added only new USDT probes. They are compiled only as nop
instructions and should not significantly impact the performance unless used.

1
We run a private registry for this purpose.
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Appendix B

Cluster installation instructions

Start by preparing 3 standard Fedora 38 installations, all in a single LAN, ideally

with 2 network cards as described in section 2.1. All systems should have an

accessible root shell. Any time we write about running a command, we always

assume it is run from the root shell.

In the attachment, there are two scripts prefixed with setup. First, we advise

editing both of the scripts:

• Edit the setup1-general.sh script and change the network configuration

function, configure_systemd_networkd, to match your network envi-

ronment. Especially, the names of your network interfaces.

• Edit the setup2-master.sh script and change $IMAGE variable with the

qualified name of your OVS container (instructions on how to build it in

appendix A).

Once you changed the script, follow these steps:

1. Run the setup1-general.sh script on all machines. Provide kb1, kb2 or

kb3 as an argument to set the hostnames.

2. Wait for all the systems to reboot.

3. On the machine you chose as kb1, run the setup2-master.sh script.

4. On kb1, run kubeadm token create --print-join-command

5. Append the --cri-socket=unix:///var/run/cri-dockerd.sock op-

tion at the end of the output of the previous step and run the command on

both kb2 and kb3.
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6. Wait for the cluster to initialize, i.e. the command kubectl get nodes on

kb1 should show that all 3 nodes are in the Ready state.

7. Copy pod specification files from the kube_configs directory to kb1. Edit

the reflector.yaml file and change the image reference to your build

of the analyzer container (see appendix C). Create the pods by calling

kubectl create -f $file.

8. Check the pods deployment status using kubectl get pods. Make sure

that all pods are in the Ready state before proceeding.

9. At this point, you can run the experiments. To get a root shell in the

arch pod, use the kubectl exec -ti arch -- /bin/bash command.

Similarly for the victim pod.
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Appendix C

analyzer - the tool for running
experiments

C.1 Build
The source code is located in the analyzer directory in the attachment. Only the

Rust toolchain is required for compilation:

# in the analyzer/ directory
cargo build --release --target=x86_64-unknown-linux-musl
# the executable will be located at
# analyzer/target/x86_64-unknown-linux-musl/release/analyzer

Continue by building the container image:

# again in the analyzer/ directory
podman build -t analyzer .

Push the image to your container registry of choice and remember the qualified

container name. The image is required for the reflector pod, more in appendix B.

Also, copy the binary to the $PATH on all nodes and pods.

C.2 Usage
The analyzer is generally a collection of smaller tools, all invoked via subcom-

mands. The tool can be always supplied with the --help option and it will

print out a help message. The following subsections will describe how to use the

analyzer for the discussed experiments.
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Data collection The measurement results are stored in files in the analyzer’s

current working directory. Multiple files are usually created. The file names start

with a human-readable identifier of the data series. The second part of the file

names is a timestamp (identical for all files created in a single analyzer run).

The analyzer can upload results to an HTTP server when provided with the

--push-results-url argument. When the URL is provided, for every data file

it creates, the analyzer calls the curl -T [FILE] {URL} command.

Data format The result files are usually using the CSV format. All data series

use the same time source (see section 2.2.5). Therefore, all measurements can be

easily aligned even when the collected data came from different analyzer runs

(i.e. in a pod and on a host at the same time).

C.2.1 Eviction timeout measurement

The result of this experiment is a single CSV file with timestamps and the measured

round-trip times.

# on arch (pod)
analyzer randomized-eviction-timeout \
--target-ip 192.168.1.221 \
--count 3

C.2.2 Packet fuzzing

This experiment creates multiple data files, not all of which are relevant. From

the node-logger subcommand, we are interested in upcall statistics located

in the kernel_flow_table_trace*.csv file. The tags*.jsonl file from the

packet-fuzz subcommand provides us with timestamps allowing us to separate

the upcalls into categories.

# on kb2
analyzer install-dependencies
analyzer node-logger --only-upcalls

# on arch (pod)
analyzer install-dependencies
analyzer packet-fuzz

52



C.2.3 Packet flood
In this experiment, we were not looking for anything in particular, therefore all

the result files can be of interest.

# on arch (pod)
analyzer packet-flood --count 500000

# on victim (pod)
analyzer victim

# on kb2
analyzer install-dependencies
analyzer node-logger --only-upcalls

C.3 Processing of results
Scripts for creating plots are located in the analyzer/postprocessing directory.

To use them, it is necessary to install Python, matplotlib, Polars, Pandas, numpy

and scipy.

There is a script for every experiment type. The packet flood experiment has

multiple similar scripts with slightly differently preconfigured plots, the others

have only a single script. The scripts, especially the packet-flood related, contain

extra commented-out code to plot additional data.

All scripts expect two arguments - a path to a directory containing all results

from a single experiment and the name of the output file.
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